- 2.12 MB
- 2022-05-14 14:48:52 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
EffectofheattreatmentonmicrostructureandtensilepropertiesofA356alloysPENGJi-hua1,TANGXiao-long1,HEJian-ting1,XUDe-ying21.SchoolofMaterialsScienceandEngineering,SouthChinaUniversityofTechnology,Guangzhou510640,China;2.InstituteofNonferrousMetal,GuangzhouJinbangNonferrousCo.Ltd.,Guangzhou510340,ChinaReceived17June2010;accepted15August2010AbstractTwoheattreatmentsofA356alloyswithcombinedadditionofrareearthandstrontiumwereconducted.T6treatmentisalongtimetreatment(solutionat535℃for4h+agingat150℃for15h).Theothertreatmentisashorttimetreatment(solutionat550℃for2h+agingat170℃for2h).TheeffectsofheattreatmentonmicrostructureandtensilepropertiesoftheAl-7%Si-0.3%Mgalloyswereinvestigatedbyopticalmicroscopy,scanningelectronicmicroscopyandtensiontest.Itisfoundthata2hsolutionat550℃issufficienttomakehomogenizationandsaturationofmagnesiumandsiliconinα(Al)phase,spheroidofeutecticSiphase.Followedbysolution,a2hartificialagingat170℃isalmostenoughtoproducehardeningprecipitates.ThosesamplestreatedwithT6achievethemaximumtensilestrengthandfractureelongation.Withshorttimetreatment(ST),samplescanreach90%ofthemaximumyieldstrength,95%ofthemaximumstrength,and80%ofthemaximumelongation.Keywords:Al-Sicastingalloys;heattreatment;tensileproperty;microstructuralevolution1IntroductionTheaging-hardenablecastaluminumalloys,suchasA356,arebeingincreasinglyusedintheautomotiveindustryduetotheirrelativelyhighspecificstrengthandlowcost,providingaffordableimprovementsinfuelefficiency.EutecticstructureofA390canberefinedanditspropertiescanbeimprovedbyoptimizedheattreatment.T6heattreatmentisusuallyusedtoimprovefracturetoughnessandyieldstrength.ItisreportedthatthosefactorsinfluencingtheefficiencyofheattreatmentofAl-Sihypoeutecticalloysincludenotonlythetemperatureandholdingtime,butalsotheas-castmicrostructureandalloying
addition.SomeT6treatmenttestmethodstandardsofA356alloysaremadeinChina,USA,andJapan,andtheyarewellaccepted.However,theyneedmorethan4hforsolutionat540℃,andmorethan6hforagingat150℃,thuscausesubstantialenergyconsumptionandlowproductionefficiency.Itisbeneficialtostudyamethodtocutshorttheholdingtimeofheattreatment.TheT6heattreatmentofAl-7Si-0.3Mgalloyincludestwosteps:solutionandartificialaging;thesolutionstepistoachieveα(Al)saturatedwithSiandMgandspheroidizedSiineutecticzone,whiletheartificialagingistoachievestrengtheningphaseMg2Si.Recently,itisshownthatthespheroidizationtimeofSiisdependantonsolutiontemperatureandtheoriginalSiparticlesize.Ashortsolutiontreatmentof30minat540or550℃issufficienttoachievealmostthesamemechanicalpropertylevelasthatwithasolutiontreatmenttimeof6h.Fromthermaldiffusioncalculationandtest,itissuggestedthattheoptimumsolutionsoakingtimeat540℃is2h.Themaximumpeakagingtimewasmodeledintermsofagingtemperatureandactivationenergy.Accordingtothismodel,thepeakyieldstrengthofA356alloycouldbereachedwithin2−4hwhenagingat170℃.However,fewstudiesareontheeffectofcombinedtreatmentwithshortsolutionandshortaging.Inourpreviousstudy,itwasfoundthatthemicrostructureofA356alloycouldbeoptimizedbythecombinationofTi,B,SrandRE,andtheeutecticmeltingpeaktemperaturewasmeasuredtobe574.4℃bydifferentialscanningcalorimetry(DSC).Inthisstudy,usingthisalloymodifiedtogetherwithSrandRE,theeffectofdifferentheattreatmentsonthemicrostructureanditsmechanicalpropertieswereinvestigated.2ExperimentalCommercialpurealuminumandsiliconweremeltedinaresistancefurnace.ThealloywasrefinedusingAl5TiBmasteralloy,modifiedusingAl-10SrandAl-10REmasteralloys.ThechemicalcompositionofthisA356alloyingot(Table1)wascheckedbyreadingspectrometerSPECTROLAB.Beforecasting,thehydrogencontentofabout0.25cm3per100ginthemeltwasmeasuredbyELH-III(madeinChina).Fourbarsof50mm×70mm×120mmweremachinedfromthesameingotandheat-treatedaccordingtoTable2.Followedthesolution,barswerequenchedinhotwaterof70℃.Samplescutfromthecastingotandheat-treatedbarswereground,polishedandetchedusing0.5%HFagent.OpticalmicroscopeLeica−430andscanningelectricmicroscopeLEO1530VPwithEDS(Inca300)wereusedtoexaminethemicrostructureandfractograph.ToquantifytheeutecticSi
morphologychangeofdifferentheattreatments,animageanalyzerImage-ProPlus6.0wasused,andeachmeasurementincluded800−1200particles.Table1ChemicalcompositionofA356modifiedwithTi,SrandRE(massfraction,%)SiCuFeMnMgTiZnRESr6.85<0.010.19<0.010.370.230.030.250.012Table2HeattreatmentsinthisstudyTreatmentSolutionAgingTemperature/°CHoldingtime/hTemperature/°CHoldingtime/hST550±521702T6535±5415015Tensilespecimensweremachinedfromtheheattreatedbars.ThetensiletestswereperformedusingascrewdrivenInstrontensiletestingmachineinairatroomtemperature.Thecross-headspeedwas1mm/min.Thestrainwasmeasuredbyusinganextensometerattachedtothesampleandwithameasuringlengthof50mm.The0.2%proofstresswasusedastheyieldstressofalloys.Threesamplesweretestedforeachheattreatmenttocalculatethemeanvalue.3Resultsanddiscussion3.1Microstructuralcharacterizationofas-castalloyThemicrostructureofas-castA356alloyisshowninFig.1(a).Itisshownthatnotonlytheprimaryα(Al)dendritecellisrefined,butalsotheeutecticsiliconismodifiedwell.Bymeansoftheimageanalysis,microstructureparametersofas-castA356alloywereanalyzedstatisticallyasfollows:α(Al)dendritecellsizeis76.1μm,siliconparticlesizeis2.2μm×1.03μm(length×width),andtheratioaspectofsiliconis2.13.ThedistributionsofRE(mishmetalrareearth,morethan65%Laamongthem),Ti,Mg,andSrintheareashowninFig.1(b)arepresentedinFigs.1(c)−(f)respectively.ItisshownthattheeutecticsiliconparticleisusuallycoveredwithSr,whichplaysakeyroleinSiparticlemodification;TiandREpresentgenerallyuniformdistributionovertheareaobserved,althoughalittlesegregationofREisobservedandshownbyarrowinFig.1(d).ItissuggestedthatbecausetherefinerTiAl3andTiB2arecoveredwithRE,therefiningefficiencyisimprovedsignificantly.Intheas-castalloy,someclustersofMgprobablyindicatethatcoarserMg2Siphasesexist(arrowinFig.1(d))).Tisolutecanlimitthegrowthofα(Al)primarydendritebecauseofitshighgrowthrestrictionfactor.TheimpedimentofformationofpoisoningTi-SicompoundaroundTiAl3andpromotionofTi(Al1−xSix)3filmcoveringTiB2areveryimportantinAl-Sialloyrefining.ForAl-Sialloys,theeffectofREonthe
refiningefficiencyofTiandBcanbecontributedtothefollowingcauses:preventingrefinerphasesfrompoisoning;retardingTiB2phasetoamassandsink;promotingtheTi(Al,Si)3compoundgrowthtocovertheTiB2phase.Inthiswork,withsuitableadditionofReandSr,themicrostructureofA356alloywasoptimized.Especially,eutecticSiismodifiedfully,whichisbeneficialtopromoteSitospheroidizefurtherduringsolutiontreatment.3.2MicrostructuralevolutionduringheattreatmentThemicrostructuresofA356alloystreatedwithsolutionat550℃for2handSTtreatmentarepresentedinFigs.2(a)and(b)respectively,whilethosetreatedwithsolutionat535℃for4handT6treatmentarepresentedinFigs.2(c)and(d),respectively.FromFig.1andFig.2,afterdifferentheattreatments,theprimaryα(Al)hasbeentosomeextentandtheeutecticsiliconhasbeenspheroidizedfurther.BothSTandT6treatmentsproducealmostthesamemicrostructure.TheeutecticSiparticledistributionandstatisticalmeanaspectratioofeutecticSiparticleareshowninFig.3.Afteronlysolutionat535℃for4hand550℃for2h,themeanaspectratiosofSiare1.57and1.54respectively.AfterbeingtreatedbySTandT6,thoseaspectratiosofSidonotvarygreatly,andtheyare1.49and1.48,respectively.Aftersolutionorsolution+aginginthisstudy,thefrictionofeutecticSiparticleswithaspectratioof1.5is50%.TheeutecticmeltingonsettemperatureofAl-7Si-Mgwasreportedtobemorethan560℃.550℃isbelowtheliquid+solidphasezone.Duringsolution,twostepsoccursimultaneously,i.e.,theformationofAlsolutionsaturatedwithSiandMg,andspheroidizationoffibrousSiparticle.Thefollowingmodelpredictsthatdisintegrationandspheroidizationofeutecticsiliconcoralsarefinishedat540℃afterafewminutes(τmax):(1)whereφdenotestheatomicdiameterofsilicon;γsymbolizestheinterfacialenergyoftheAl/Siinterface;ρistheoriginalradiusoffibrousSi;Dsistheinter-diffusioncoefficientofSiinAl;andTisthesolutiontemperature.WhentheDsvariationatdifferenttemperaturesistakenintoaccount,itisplausibletosuggestthatτmaxat550℃islessthanτmaxat540℃.FromFig.2(a),itisactuallyprovedthatspheroidizationofeutecticSiparticlecouldbefinishedwithin2hwhensolutionat550℃.InaselectedareaofA356alloytreatedwithonlysolutionat550℃for2h(Fig.4(a)),
thedistributionofelementMgispresentedinFig.4(b).BecausethereisnoclusterofMginFig.4(b),itmeansacompletedissolutionofSi,MgintoAldendriteduringthissolution.FromthemicrostructureofA356alloytreatedwithT6(Fig.5(a)),thedistributionofMgisshowninFig.5(b).Fig.1SEMimages(a,b),andEDSmappingfrom(b)forTi(c),La(d),Mg(e)andSr(f)inas-castalloyFig.2MicrostructureofA356alloywithdifferentheattreatments:(a)Solutionat550°Cfor2h;(b)STtreatment;(c)Solutionat535°Cfor4h;(d)T6treatmentForA357alloywithdendritesizeof240μm,uniformdiffusionandsaturationofMginAlcouldbefinishedat540°Cwithin2h.Inthisstudy,thecellsizeofprimaryα(Al)islessthan100μm.Itisreasonablethatthosesolutionstreatedat535°Cfor4hand550°C
for2h,canachieveα(Al)solidsolutionsaturatedwithMgandSibecausediffusionrouteisshort,evenatahighersolutiontemperature.Fig.3StatisticanalysisofeutecticSiinA356alloywithdifferentheattreatmentsFig.4SEMimage(a)andEDSmapping(b)ofMgdistributioninalloyafteronlysolutionat550℃for2hFig.5SEMimage(a)andEDSmappingofMg(b)inalloyafterheattreatmentwithT6Duringaging,SiandMg2Siphaseprecipitationhappenedinthesaturatedsolidsolutionofα(Al)accordingtothesequenceintheAl-Mg-SialloyswithexcessSi[21].The
needleshapedMg2Siprecipitationwasobservedtobeabout0.5μminlengthandlessthan50nminwidth,andthesiliconprecipitatesweremainlydistributedinα(Al)dendritesandfewofthemcouldbeobservedintheeutecticregion[22].Becauseofthesmallsize,theseprecipitationscouldnotbeobservedbySEMinthisstudy.However,itisplausibletosuggestthatthedistributionofMgindendriteAlcellzoneandeutecticzoneisuniform(Fig.4(b)and5(b)).AccordingtothestudybyROMETSCHandSCHAFFER[15],thetimetoreachpeakyieldis2−4hand12−14hat170°Cand150°C,respectively.From150to190°Cofagingtemperature,thepeakhardnessvariesbetweenHB110andHB120.Hence,itisbelievedthatagingat170°Cfor2hproducesalmostthesameprecipitationhardeningasagingat150°Cfor15h.3.3TensilepropertiesofA356alloysThetensilemechanicalpropertiesofA356alloysaregiveninTable3.DuetothemicrostructureoptimizationofA356alloybymeansofcombinationofrefiningandmodification,tensilestrengthandfractureelongationcanreachabout210MPaand3.7%respectively.UsingT6treatmentinthisstudy,strengthandelongationcanbeimprovedsignificantly.ForthosesampleswithT6treatment,thetensilestrengthandductilitypresentthemaximumvalues.90%ofthemaximumyieldstrength,95%ofthemaximumultimatestrength,and80%ofthemaximumelongationcanbereachedforsamplestreatedbySTtreatment.However,T6treatmentspendsabout19h,whileSTtreatmenttakesonlyabout4h.FractographsofsamplestreatedwithT6arepresentedinFig.6.Thedimplesizeisalmostsimilarwithdifferentheattreatments,indicatingthatthesizeandspacingofeutecticsiliconparticlevarylittlewithdifferentheattreatments.Shrinkagepore,microcrackinsidethesiliconparticleandcracklinkagebetweeneutecticsiliconparticleswereobservedonthefracturesurfaces.Table3TensilepropertiesofA356alloyswithdifferentheattreatmentsHeartreatmentσb/MPaσ0.2/MPaδ/%As-cast210−3.7ST2471785.6T62551857.0ItiswellknownthatshrinkageporeshaveagreateffectonthetensilestrengthandductilityofA356alloys.In-situSEMfractureofA356alloyindicatesthefracturesequenceasfollows[4]:micro-crackinitiationinsidesiliconparticle;formationofslippingbandintheAldendrite;linkagebetweenthemacro-crackandmicro-crack,andthegrowthofcrack.
Duringtensilestrain,inhomogeneousdeformationinthemicrostructureinducesinternalstressesintheeutecticsiliconandFe-bearingintermetallicparticles.AlthoughthefullmodificationofeutecticSiparticlewasreachedinthisstudy,thosesamplestreatedwithT6treatmentdonotperformaswellasexpected.Themainreasonisprobablyduetothehighergascontent(0.25cm3per100gAl).OurnextstepistodevelopanewmeanstopurifytheAl-SIalloystofurtherimprovetheirmechanicalproperties.Fig.6Fractographsofsampleswithdifferentheattreatments:(a),(b)T6;(c),(d)ST4Conclusions1)Thesolutionat535°Cfor4handthesolutionat550°Cfor2hcanreachfullspheroidizationofSiparticle,oversaturationofSiandMginα(Al).TheheattreatmentsofT6andSTproducealmostthesamemicrostructureofA356alloy.2)AfterbothT6andSTtreatments,theaspectratioofeutecticSiparticlewillbereducedfrom2.13tolessthan1.6,andthefrictionofeutecticSiparticleswithaspectratioof1.5is50%.3)TheT6treatmentcanmakethemaximumstrengthandfractureelongationforA356alloy.AfterSTtreatment,90%ofthemaximumyieldstrength,95%ofthemaximumultimatestrength,and80%ofthemaximumelongationcanbeachieved.
热处理对A356铝合金组织结构和力学性能的影响彭继华1,唐小龙1,何健亭1,许德英21.华南理工大学材料科学与工程学院,广州510640;2.广州金邦有色合金有限公司有色金属研究所,广州510340摘要用两种不同的热处理制度对稀土和锶综合细化变质的A356合金进行处理,一种是长时间标准处理制度T6(535°C固溶4h+150°C时效15h),另一种是短时间的热处理制度ST(550°C固溶2h+170°C时效2h)。采用光学显微镜、扫描电镜及室温拉伸试验等手段分析热处理制度对A356合金微观组织和拉伸力学性能的影响。结果表明:在550°C下固溶2h可以获得Mg、Si过饱和且分布均匀的α(Al)固溶体,并使共晶硅相球化;再经170°C人工时效2h后,可以达到传统T6处理的时效析出效果。拉伸试验结果表明,A356铝合金经传统T6处理得到了最高的拉伸强度和断裂伸长率;通过ST短时热处理后,其拉伸强度、屈服强度及伸长率分别可以达到T6处理时的90%,95%和80%。1.说明时效硬化的铸造铝合金,如A356,越来越多地使用在汽车行业由于其相对较高的比强度和较低的成本,提供负担得起的改善燃油效率。共晶结构可以精炼A390及其性能可以通过热处理优化。T6热处理通常用来提高断裂韧性和屈服强度。据报道,这些因素影响了效率的热处理亚共晶铝硅合金不仅包括温度和保温时间,但也铸态微观组织和合金添加有关。一些T6处理试验方法标准的A356合金是由中国、美国和日本制定的,他们都接受了。然而,他们需要超过4h为解决方案在540°C,超过6小时在150°C的时效,从而导致大量能源消耗和低生产效率。它是缩短了热处理保温时间的好学习方法。T6热处理的Al-7-Si-0.3镁合金包括两个步骤:解决方案和人工时效;解决方案步骤是实现α(Al)饱和与Si和Mg和球化处理Si在共晶区,而人工时效强化相Mg2Si是实现。最近,它表明球化时间的Si是依赖于溶液温度和原始硅颗粒大小。一个短的解决方案在540或550°C处理30分钟就足以实现处理6h的解决方案几乎相同的力学性能水平。从热扩散计算和测试,建议最优方案是在540°C的处理时间为2h。最大峰值老化时间是建模方面的时效温度和活化能。根据这个模型,A356合金的屈服强度峰值可以达到在2−4h在170°C时效。然而,很少有研究的影响与短期解决方案和短期时效。在我们先前的研究中,人们发现合金的显微结构结合Ti,BSr和RE可以优化A356,共晶熔化峰值温度通过差示扫描量热法(DSC)测量是574.4°C。在这项研究中,使用这种合金改性连同Sr和RE,作用不同的热处理对微观结构及其力学性能进行了调查。
2.试验商业纯的铝和硅的电阻炉中熔化。合金细化采用08期Al5TiB的主合金,修改使用的Al-10SR和铝10RE中间合金。这个A356合金锭(表1)的化学成分直读光谱仪SPECTROLAB检查。在铸造之前,约0.25立方厘米每100克在熔体中的氢含量ELH-III(中国制造)测定。从相同的锭的加热处理,根据表2加工扶手为50毫米×70毫米×120毫米。其次该溶液中,在70℃的热水中骤冷棒从铸锭和热处理后的棒切割的样品进行研磨,抛光和腐蚀,以0.5%HF剂。光学显微镜徕卡-430和扫描电镜LEO1530VP与EDS(印加300)被用来研究的微观结构和断口。为了量化不同的热处理,共晶Si的形态变化的Image-Pro加6.0使用图像分析仪,每次测量的800-1200颗粒。表1A356的化学成分改性与Ti,Sr和RE(质量分数,%)SiCuFeMnMgTiZnRESr6.85<0.010.19<0.010.370.230.030.250.012表2在这项研究中的热处理处理固溶时效温度/°C保温时间/h温度/°C保温时间/hST550±521702T6535±5415015拉伸试样加工从热处理之后。拉伸试验,使用的螺杆驱动的英斯特朗拉力试验机在室温下在空气中进行。十字头速度为1mm/分钟。该菌株被测量通过使用附于该样本的引伸和与测量的长度为50毫米。作为合金的屈服应力的0.2%弹性极限应力。三个样品进行了测试的每个加热处理来计算平均值。3结果与讨论3.1铸态合金的显微组织性质图1(a)为铸态合金的铸态A356合金的显微组织的微结构特征示。结果表明,不仅被提炼,初生α(Al)枝晶细胞也共晶硅以及修改。通过图像分析,铸态A356合金的微结构参数的统计分析如下:α(Al)枝晶单元大小为76.1微米,硅的粒径为2.2微米×1.03微米(长×宽),和比例硅方面是2.13。RE(米什金属稀土,其中La65%以上),钛,镁,锶图所示的区域分布。图1(b)显示了存在的区域。图1(c)-(F)分别呈现出来。它示出共晶硅粒子通常被锶覆盖,锶在Si粒子改性Ti和RE目前观察到的区域的大致均匀的分布起着关键的作用,虽然观察到可再生能源的偏析不大,如图中的箭头所示。图1(d)。有人建议,因为磨浆TiAl3相和TiB2与RE覆盖,精炼效率显着提高。在铸态合金中,Mg的若干个簇可能表明存在粗糙的Mg2Si的阶段(箭头所示,图1(d))。钛的溶质可以限制的α(Al)枝晶的生长,因为其高增长的制约因素。周围改性的Ti-Si
化合物的形成TiAl3的障碍和促进钛(AL1-xSix)3薄膜覆盖硼化钛在Al-Si合金精炼中是非常重要的。铝硅合金,Ti和B的炼油效率的影响稀土对可导致以下原因:防止改性;炼油阶段延缓TiB2阶段积累和吸收,促进钛(铝,硅)3复合增长率覆盖硼化钛相。在这项工作中,用合适的另外的Re和Sr,A356合金的微观结构是最佳的。尤其,共晶Si的充分的修改,这是有益的,以促进硅在固溶处理时进一步球化。3.2热处理过程中的微观组织转变A356合金的显微组织用溶液在550℃下2小时,ST处理图图2(a)及(b)分别为,而那些用溶液在535℃下4小时,T6处理的图2(c)和(d)所示。从图1和图2,不同的热处理后,初生α(Al)的已在一定程度上,共晶硅有进一步球化。ST和T6治疗产生几乎相同的微观结构。共晶硅的颗粒分布和共晶Si粒子的统计平均纵横比示于图3。图1SEM图像(a,b),和EDS(b)映射为Ti(c)、La(d)、镁(e)和Sr(f)在铸态合金固溶处理在535℃下4小时,550℃下进行2小时后的Si的平均纵横比分别为1.57和1.54。ST和T6处理后的Si,这些纵横比不变化很大,它们分别是1.49和1.48,这项研究中在溶液或溶液+时效之后,共晶Si粒子的纵横比为1.5的摩擦是50%。据报道共晶熔融起始温度Al-7Si-Mg,超过560°C。550°C以下的液体+固相区。在溶液过程中,两个步骤同时进行,即形成与Si和Mg的Al溶液饱和,纤维的Si颗粒的球化。下面的模型预测,共晶硅珊瑚的解体和球化完成在540°C后几分钟(τmax):
式中,φ表示硅原子直径;γ象征的Al/Si界面的界面能;ρ是纤维硅的初始半径,Ds是在Al的Si的互扩散系数,T为溶液的温度。当在不同温度下的Ds的变化考虑在内,这是合理的建议,τmax在550°C小于τmax在540℃。图2(a)它实际上是证明,溶液在550℃时,共晶Si粒子的球化,可以在2小时内完成。图2不同微观结构的A356合金热处理:(a)固溶在550℃2h;(b)ST处理;(C)固溶在535℃4h;(d)T6处理图3共晶硅在A356合金与不同的热处理的统计分析图4合金在550℃下2小时后的SEM图像(a)和EDS图谱的(b)Mg的分布在A356铝合金的选定区域用固溶处理,在550℃
下进行2小时(图4(a)),元素镁的分布示于图4(b)。图4(b)中,它表示成Al枝晶的硅,图中的Mg因为没有群集,镁完全溶解。从T6(图5(a))图5合金经过热处理和T6的SEM图像(a)和EDSMg(b)对于A357合金枝晶的大小为240μm,均匀扩散和饱和度的Mg在Al可以在540℃下在2小时内完成。在这项研究中,初生α(Al)的细胞的大小是小于100μm。这是合理的,这些解决方案在535℃下4小时,550℃下进行2小时的处理,因为扩散路径短,即使在一个较高的溶液温度,可实现的α(Al)固溶Mg和Si的饱和。在时效过程中,Si和Mg2Si相沉淀发生在饱和固溶体α(铝)根据用过量的硅的Al-Mg-Si系合金中的序列。Mg2Si的析出针状观察到约0.5μm的长度和宽度小于50nm,和硅的析出物主要分布在α(Al)的枝晶和共晶区域中可观察到他们很少。由于体积小,无法被观察到这些沉淀通过SEM在这项研究中。但是,它是合理的建议枝晶Al的细胞区和共晶区中的Mg的分布是均匀的(图4(b)和图5(b))。根据由罗梅奇谢弗的研究时达到峰值的产率,为2-4小时和12-14小时分别在170℃和150℃下。从150到190℃的时效温度,峰值硬度HB110和HB120之间。因此,它被认为在170℃下时效2小时和在150℃下15小时的时效产生几乎相同的析出硬化。3.3A356合金的拉伸性能A356合金的拉伸力学性能列于表3。由于A356铝合金微观结构优化手段相结合的提炼和修改,拉伸强度和断裂伸长率可以达到约210MPa和3.7%。使用在这项研究中的T6处理,可以显着提高强度和伸长率。对于那些与T6处理后的样品,具有拉伸强度和延性的提出的最大的值。的最大屈服强度的90%,最大的极限强度的95%和80%的最大伸长率可以达到接近样品ST处理。然而,T6治疗花费约19小时,而ST处理需要只有4小时左右。与T6处理的样品的断口形貌示于图6。凹坑的大小几乎是相似的不同的热处理,说明不同的热处理,共晶硅粒子的大小和间距变化不大。收缩毛孔,断裂表面上观察到微裂纹内的共晶硅粒子的硅粒子和裂纹之间的关系。表3不同的热处理的A356合金的拉伸性能热处理σb/MPaσ0.2/MPaδ/%
As-cast210−3.7ST2471785.6T62551857.0众所周知收缩气孔A356合金的拉伸强度和延性的有很大的作用。在SEM原位断裂A356合金表示断裂序列如下:硅粒子的内部微裂纹的萌生;铝枝晶滑移带的形成,宏观裂纹和微裂纹之间的联系,而且增长破裂。在拉伸应变,在微观结构中的不均匀变形诱导共晶硅和Fe-轴承金属间化合物颗粒的内部应力。虽然在这项研究中达成了全面修改的共晶硅粒子与T6处理,这些处理的样品,不执行不如预期。主要的原因可能是由于气体含量较高(每100克铝0.25立方厘米),我们的下一步是开发一种新的手段来净化的Al-Si合金,以进一步提高其机械性能。图6不同热处理的断口形貌样品:(a),(b)T6;(c),(d)ST4结论1)热处理在535℃下4小时和在550℃下进行2小时可达到充分球化的Si粒子,α(Al)的Si和Mg的过饱和。热处理T6和ST生产A356合金微观结构几乎相同。2)在T6和ST处理,共晶Si粒子的纵横比从2.13减少到小于1.6,共晶Si粒子的纵横比为1.5的摩擦是50%。3)T6处理可以使A356合金达到最大的强度和断裂伸长率。ST处理后可到到的最大屈服强度的90%,最大的极限强度的95%和80%的最大伸长率。